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FOREWORD

The role of apparent mass effects in determining the
magnitude of parachute opening shock force have been studied for
many years. The ideas proposed in this report present arguments
that the apparent mass effects may be neglected in calculating
parachute opening shock force when using the dynamic drag area
method of solution. 1t is also argued that the partial collapse
of round personnel parachutes, at full inflation, may be due to
the inertia of the entrapped air mass in concert with an air mass
from aft of the canopy.
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ABSTRACT

This report sets forth, without experimental proof, the
reasons as to why the author feels that apparent mass effects in
parachute deployment are not as important to the analysis derived
in Reference (1) as usually perceived. This commentary applies to
the parachute opening shock phase of deployment. Canopy-wake
recontact which occurs after the canopy has been fully inflated
for a definite period of time is a different problem. In the
final phase of finite mass deployments the unrestrained air mass
that inflated the canopy has a higher trajectory velocity than the
parachute system. This higher trajectory velocity together with
changes in the canopy shape catapults the air mass from the
parachute resulting in a temporary loss of system mass which tends
to compensate for other air masses that may have been added.
Infinite mass deployments also have added air masses in addition
to the air mass contained within the canopy. Dynamic drag areas
obtained from infinite mass deployments implicitly include these
effects. In infinite mass deployments where the velocity
differential between the internal air mass and the system are
minimal the deflation effects will not occur. The wvalidity of
these ideas can be verified by the comparison between calculated
and experimental results.
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INTRODUCTION

The dynamic drag area signatures of Figure 1 were obtained
from infinite mass wind tunnel deployments of the several model
parachutes. The application of the infinite mass dynamic drag
area signatures to finite mass deployments has raised some
questions, by other experimenters, in concern for apparent mass
effects. The thoughts expressed in this report present why I feel
that parachute apparent mass related to parachute opening shock
force is not as strong an effect as usually believed. Opening
shock effects are not the same problem as wake reattachment after
full canopy inflation. Apparent mass may also be important in
parachute stability. Recent conversations with other
experimenters as to apparent mass effects indicates that they are
asking similar questions. Therefore, these ideas are offered even
though they have not been experimentally substantiated.

Observation of inflating personnel parachutes often shows
that the canopy fully inflates and then attempts to turn inside
out as the crown of the canopy moves forward and approaches the
plane of the skirt hem. This deflation is attributed to the
apparent mass pushing on the canopy from behind. If this is true
then apparent mass effects should be significant. However, there
are other events, indistinguishable by the naked eye, taking place
at the same time which would produce the identical result and
reduce the magnitude of the apparent mass effects. Two main
events occur during the inflation cycle of the parachute that
affect the added air mass performance.

APPROACH

The first event is the change in the canopy shape as the
included air mass is collected, and the sacond is the velocity and
kinetic energy of the included air mass and its relationship to
the system velocity.

THE TRANSITION OF THE INFLATING CANOPY GEOMETRY

Figure 2 depicts the transition of the geometry of a solid
cloth parachute from the stretched out geometry at line stretch to
the inflated geometry at the time t_ . As air mass is collected
the devel )jping suspension line cone angle causes the canopy skirt
hem to accelerate forward toward the payload. At the same time

1/2
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FIGURE 1. DYNAMIC DRAG-AREA RATIO VERSUS DIMENSIONLESS FILLING TIME
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the canopy vent and the entrapped air mass has an additional
forward acceleration applied. With reference to Figure 1, the
solid cloth parachutes develop drag area slowly at first and then
more rapidly as the canopy inflates. The drag area growth
represents a growth of the canopy radially; that is perpendicular
to the trajectory. This radial growth accelerates as the canopy
inflates. The acceleration is represented by the instantaneous
slope of the dynamic drag area signatures in Figure 1. As the
radial growth accelerates the parachute vent and crown area should
be under severe accelerations along the trajectory in order to
keep pace with the radial inflation. Acceleration of the canopy
cloth also accelerates the air mass contained within the canopy
and raises the velocity and kinetic energy level of the entrapped
air.
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SYSTEM VELOCITY PROFILE DURING INFLATION

The next consideration is the system velocity profile during
inflation. Finite mass deployments exhibit substantial trajectory
velocity reduction during canopy inflation. As weight is added to
the system the velocity profile has less variation, the canopy
inflates faster, the opening shock force increases and occurs
later in the inflation process. Example 1 illustrates how the
velocity profile varies during inflation of a solid cloth
parachute for finite mass thru infinite mass weight-to-drag-area
ratios.

Example 1: Determine the velocity profile during canopy
inflation of a 200 1b. payload being recovered by a 30 gore solid
cloth parachute with a D = 35 ft. when deployed at 1000 ft
altitude with the follow?ng system parameters. Vary W/CDSO to
illustrate finite thru infinite mass performance.

Let p= 0.002309 slugs/FT°, k=1.46, Cp=1.7, Agy=962.1 FT2,

- 2 - 3 -
Ayo=399.53 FT, ¥, = 4690.83 FT~, V =250 FPS.

1. Inflation distance, Vsto' from Reference 1.

9pYo | CpSo
2W Cpp %
AMO - ASO k 2
Vgtg = —2_ e -1 it =0 (1
s'o
ngDsQ
for the given problem Adata
Vgtg = 284.56 FT.
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2. Inflation reference time, to.
V_t
SO ’
- 2
t, = (<)
S
284 56
t =
° 250
t = 1.138 SEC

3. Empirical inflation time, t

nDo

&}
Vot
Ve

8 x 35
© 250

1.120 SEC

~
|

o
H

The two independent methods of calculating the parachute inflation
time show a reasonable agreement. The advantage of Equation (1)
is the ability to adjust the inflation time for variation of the
several parameters. In this example, weight. See Figure 3 for
the effects of W/CDSO on the inflation time.

4. Ballistic Mass Ratio

2w
PaVt,CpS,

_ 2 x 200
0.002309 x 32.2 x 250 x 1.138 x 721

=
]

0.0262

M = 0.0262 which is below the limiting value of M, = 0.1607
for finite mass operation
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5. Velocity equation

vy 1 =0 from Table 1, Reference 1
V' 1 ty7
s 1 +~—(—) {5
7Mt0
250
Vo= 5

ty\ 7
1 + 5453 |
%

The velocity-time ratio results are plotted in Figure 4 for
several weight-to-drag-area ratios which result in performance
modes of finite mass through infinite mass. In the finite mass
deployment mode balf of the inflation time is required to lower
the trajectory velocity by 10 fps as compared to the last half of
the inflation cycle where the trajectory velocity is reduced an
additinnal 200 fps. During this final deceleration the higher
velocity and kinetic energy of the entrapped air mass, including
the vent and skirt hem acceleration efiects, propel the c.ntrapped
air from the canopy mouth as though it were in a catapult. As the
air leaves the canopy the crown cloth follows as if it were only
being pushed from behind by the external apparent mass. As the
mode of cperation approaches infinite mass the velocity reduction
during inflation approaches zero and the differential velocity
between the system and the entrapped air mass is minimized.
Deployments where there is minimal velocity differential between
the entrapped air mass and the system do not exhibit catastrophic
deflation as do finite mass deployments where the entrapped mass-
system velociiy differential at t/t0=1 is substantial.
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FIGURE 4. TRAJECTORY VELOCITY PROFILE OF THE INFLATING SOLID

CLOTH PARACHUTE OF EXAMPLE 1.
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Parachutes are designed to be flexible structures. This
flexibility and the subsequent partial collapse at full inflation
give the appearance of a substantial air mass overtaking the
parachute from behind. If, however, the canopy motion is due to
the catapulting of the entrapped air mass the actual "other"
associated air mass may be small enough to be neglected in the
analysis. A rigid, no airflow, parachute shape may perform quite
differently and have a much larger apparent mass. What is needed
is a "seat belt" to restrain the included air within canopy.

CONCLUSIONS

1. As a result of the canopy accelerations and the catapult
effect, the actual apparent mass effects due to air striking the
canopy from behind may be much less than expected. If this is so
the use of drag area signatures obtained from infinite mass
deployments should be applicable to the finite mass case.

2. In infinite mass deployments the canopy gecmetry transitions
as in finite mass deployments but the inflation time is reduced.
Since the trajectory velocity of the parachute system and the
entrapped air remain the same, the catapult effect is minimal.
Any effects that may be in the system due to canopy accelerations
are not visible to the observer.

3. The inertial effects of the air mass within the inflating
canopy must be taken into account when addressing parachute
apparent mass.

4. Parachute canopy flexibility is a factor in reducing apparent
mass effects.

5. The difficulty in finding a solution to a given problem and

the input required to accomplish the sclution are directly related
to the approach to the problem.

11
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NOMENCLATURE

Steady-ctate inflated mouth area, FT2

Canopy surface area, FT2

Caaopy drag area at any instant during inflation,
FT

Canopy drag area at the time t=0, FT2

Canopy steady state drag area, FT2

Average pressure coefficient is equal to the
parachute drag coefficient based on projected area
of the canopy.

Nominal diameter of the aerodynamic decelerator =

’4SO/F . FT

Gravitational acceleration, FT/SEC2

Canopy cloth permeability constant

Ballistic Mass Ratio -~ ratio of the mass of the
retarded hardware (including parachute) to a mass
of atmosphere contained in a right circular
cylinder of length (Vsto), face area (CDSO) and
density ( p)

Limiting Ballistic Mass Ratio is the system mass
ratio which causes the maximum opening shock to
occur at t_. The limiting BMR varies with the type
of parachu%e

Instantaneous time, SEC

Canopy inflation time when the inflated canopy has
reached its maximum physical size, SEC

Reference time when the parachute has reached the
design drag area for the first time, SEC

Instantaneous system velocity, FT/SEC

System velocity at the time t=to, FT/SEC

13
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NOMENCLATURE (cont)

System velocity at the end of suspension line
stretch, FT/SEC

Volume of air which mgst be collected during the
inflation process, FT

Hardware weight, including the parachute LB

Ballistic coefficient, ratio of system yeight to
parachute steady state drag area, LB/FT
Air density, SLUGS/FT3

Ratio of system drag to steady state drag area at
t=0, CDsi/CDSO

14
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13 ABS TR L BB TR YEE ¥ % orth, without experimental proof, the reasons as to why the

author feels that apparent mass effects in parachute deployment are not as important
to the analysis derived in Reference (1) as usually perceived. This commentary
applies to the parachute opening shock phase of deployment. Canopy-wake recontact
which occurs after the canopy has been fully inflated for a definite period of time
is a different problem. In the fina® phase of finite mass deployments of the
unrestrained air mass that inflated the canopy has a higher trajectory velocity than
the parachute system. This higher trajectory velocity together with changes in the
canopy shape catapults the air mass from the parachute resulting in a temporary

loss of system mass which tends to compensate for other air masses that may have
been added. Infinite mass deployments also have added air masses in addition to the
air mass contained within the canopy. Dynamic drag areas obtained from infinite
mass deployments implicitly include these effects. In infinite mass deployments
where the velocity differential between the internsl aivr mass and the system are
minimal the deflation effects will not occur., The validity of these ideas can be
verified by the comparison between calculated and experimental results,
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